產(chǎn)品中心 應(yīng)用方案 技術(shù)文摘質(zhì)量保證產(chǎn)品選型 下載中心業(yè)內(nèi)動態(tài) 選型幫助 品牌介紹 產(chǎn)品一覽 聯(lián)系我們
- 基于CPLD的壓電生物傳感器檢測電路設(shè)計
- 來源:賽斯維傳感器網(wǎng) 發(fā)表于 2011/9/20
介紹了一種基于復(fù)雜可編程邏輯器件(CPLD)的壓電生物傳感器檢測電路。該檢測電路以高性能CPLD(MAX7128)為核心,實現(xiàn)了對壓電生物傳感器10MHz高頻信號的測量與采集,以及所采集的頻率數(shù)據(jù)動態(tài)、實時顯示以及頻率數(shù)據(jù)串行通信等功能。該電路體積小、集成度高,具有可靠性高、實時性高的特點。此外該系統(tǒng)還可以通過RS-232串行接口與計算機連接進(jìn)行數(shù)據(jù)傳輸和數(shù)據(jù)存儲及分析。詳細(xì)闡明了系統(tǒng)整體結(jié)構(gòu)設(shè)計以及系統(tǒng)硬件部分的實現(xiàn),并給出了CPLD內(nèi)核仿真結(jié)果和數(shù)據(jù)采集軟件實測頻率曲線。
國內(nèi)外基于壓電石英晶體微天平技術(shù)的檢測儀器大多數(shù)使用自行設(shè)計的振蕩電路盒,使用高分辨的頻率計數(shù)器測量頻率輸出,然后進(jìn)行定時人工記數(shù),儀器復(fù)雜,自動化程度低。微型壓電生物傳感器檢測電路采用當(dāng)前最有發(fā)展前景的復(fù)雜可編程邏輯器件(CPLD)為核心器件設(shè)計而成。目前,CPLD集成度可達(dá)25萬等效門,工作速度可達(dá)180MHz。它借助自動化程度高的內(nèi)核程序開發(fā)工具,可以大大縮短系統(tǒng)的計周期,而且數(shù)據(jù)采集可以由一塊CPLD芯片完成,整個系統(tǒng)的硬件規(guī)模明顯減小。在系統(tǒng)的研制階段,由于CPLD器件引腳比較靈活,又有可擦除可編程的能力,因此對原設(shè)計進(jìn)行修改時,只需要修改原設(shè)計文件再對CPLD芯片重新編程即可,而不需要修改電路布局,更不需要重新加工印刷線路板,這就大大提高了系統(tǒng)的靈活性。結(jié)合壓電生物傳感器特性,研制一種微型化的壓電傳感器檢測電路有十分重要的意義。
1 壓電生物傳感器原理
壓電石英晶體頻移ΔF與在晶體表面均勻吸附的極薄層剛性物質(zhì)量Δm之間存在正比關(guān)系,由Sauerbrey方程描述,并且對于AT切割的石英晶體,可得到Sauerbrey方程式:
式中,ΔF、Fq(晶體基頻)、Δm、A單位分別為Hz、Hz、g。cm-2、cm2。石英晶片在氣相中振蕩時,Δf與Δm呈簡單的線性關(guān)系,因此石英晶片可用來做非常敏感的質(zhì)量檢測器,其檢測限可以達(dá)到ng級(10-9g。cm-2),甚至pg(10-12g。cm2)級水平。
根據(jù)壓電石英晶體傳感器的原理設(shè)計了一種微型化的壓電傳感器檢測電路,其檢測原理為在傳感器上預(yù)先固定與待測物能發(fā)生親和反應(yīng)的“探針”,檢測待測物時,隨著親和反應(yīng)的進(jìn)行,檢測電路實時跟蹤反應(yīng)過程,記錄傳感器上質(zhì)量變化引起頻率變化,再通過上述定量關(guān)系式計算待測物的量,其靈敏度可以達(dá)到納克級水平,結(jié)合納米金技術(shù)可將傳感器的靈敏度提高3~5倍。
2 電路硬件設(shè)計
微型壓電傳感器檢測電路是經(jīng)過前幾代儀器的開發(fā)經(jīng)驗總結(jié)和改進(jìn)基礎(chǔ)上完成的。它摒棄以往TTL集成電路或MCS51單片機為核心電路波動大,穩(wěn)定性差,電路板繪制復(fù)雜,不利于升級換代的缺點,選擇使用ALTERA公司生產(chǎn)的復(fù)雜可編程邏輯器件(CPLD)MAX7128為核心,基于RS232通信方式的串行接口數(shù)據(jù)采集分析平臺。該系統(tǒng)分為7個模塊:電源供電模塊,RS-232電平轉(zhuǎn)換模塊,振蕩電路模塊,時鐘模塊,數(shù)碼顯示模塊,MAX7128內(nèi)核模塊。其電路線路板布局如圖1所示。
圖1硬件結(jié)構(gòu)圖
圖1中,USB口為壓電生物傳感器與檢測電路相連接的接口;RS-232口為與計算機相連接的接口,將數(shù)字化的傳感器信號(頻率值)上傳到計算機,由計算機(PC機)實現(xiàn)傳感器信號的實時采集和顯示,采集數(shù)據(jù)程序由VC++6。0編寫;OSC1為提供系統(tǒng)工作時鐘振蕩電路,由TTL芯片和12MHz標(biāo)準(zhǔn)晶振組成,產(chǎn)生1s脈沖信號,作為CPLD工作時鐘輸入、RS-232通信時序脈沖以及數(shù)碼管動態(tài)顯示時序脈沖,準(zhǔn)確度高、且精確;OSC2為傳感器振蕩電路,經(jīng)過幾代反復(fù)改良,在氣相、液相均能夠正常振蕩且波形正常,將傳感器表面生物反應(yīng)信號轉(zhuǎn)化成脈沖信號,輸入CPLD進(jìn)行信號數(shù)據(jù)采集;數(shù)碼顯示采用共陰極8×8段數(shù)碼管,動態(tài)掃描顯示當(dāng)前傳感器信號值和簡單數(shù)據(jù)分析判斷結(jié)果;電源給系統(tǒng)提供直流5V工作電壓,含有直流6~15V變成5V穩(wěn)壓電路;RS-232電平轉(zhuǎn)換電路將從CPLD輸出的CMOS電平轉(zhuǎn)化為計算機所接受的TTL電平,而且可增加數(shù)據(jù)傳輸距離。
作為系統(tǒng)內(nèi)核的CPLD,采用Verilog HDL硬件設(shè)計語言、MAX+plusII10。1編譯系統(tǒng)編寫基于Altera公司CPLD(MAX7128)器件的內(nèi)核程序,設(shè)計實現(xiàn)了秒時鐘定時、10MHz頻率測量、RS-232通信時序發(fā)生器、RS-232協(xié)議數(shù)據(jù)通信、頻率數(shù)據(jù)判斷簡單分析以及數(shù)碼管動態(tài)掃描顯示控制等綜合功能,其原理如圖2所示。
圖2 CPLD內(nèi)核原理圖
3 系統(tǒng)仿真及實測結(jié)果
系統(tǒng)仿真結(jié)果:為了便于觀察,將秒時鐘計數(shù)判斷設(shè)置為66C0,得到內(nèi)核模塊的仿真圖,如圖3所示。仿真圖給出了頻率采集細(xì)節(jié),數(shù)碼管顯示控制以及串行通信控制。
圖3 CPLD內(nèi)核仿真圖
仿真結(jié)果吻合了設(shè)計思路,把內(nèi)核程序下載到CPLD(MAX7128)器件中,實際測試過程中,數(shù)碼管可以正確顯示當(dāng)前傳感器的響應(yīng)信號,使用自己開發(fā)的采集程序通過計算機串行通信采集數(shù)據(jù)數(shù)據(jù)曲線如圖4所示。所采集的數(shù)據(jù)與仿真情況一致,更進(jìn)一步驗證了設(shè)計思路的成功。
圖4 采集程序?qū)崪y頻率數(shù)據(jù)曲線
4 結(jié)語
壓電生物傳感器檢測電路可擴展為單通道微型壓電生物分析儀器,它可以基于核酸雜交的特異性,在醫(yī)學(xué)臨床研究領(lǐng)域用于疾病診斷或者基于抗原/抗體之間的特異性結(jié)合反應(yīng),用于生物樣品分析。該儀器靈敏度高,特異性強,若采用CPLD升級為大容量FPGA后,可以方便升級為多通道生物分析系統(tǒng),應(yīng)用于生物分析檢測各個領(lǐng)域。
轉(zhuǎn)載請注明來源:賽斯維傳感器網(wǎng)(www.jsxlzzp.com)
- 如果本文收錄的圖片文字侵犯了您的權(quán)益,請及時與我們聯(lián)系,我們將在24內(nèi)核實刪除,謝謝!